INTEGRAL UNIVERSITY, LUCKNOW DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

COURSE: SYSTEM AND AUTOMATIC CONTROL COURSE CODE: EC217 COURSE CREDIT: 4

PREREQUISITES:

Subject	Description	Level of study					
Mathematics	Differential equations, Laplace Transform,	B.Tech. I & II Year					
	Partial Fractions.						

COURSE OBJECTIVES:

- To understand the concepts of control system and their applications. To provide a systematic approach to interpret different physical systems, mechanical systems and electrical systems and construct the equivalent electrical model of mechanical system. To learn about the representation of a system by transfer function, block reduction method and signal flow graph.
- ✤ To understand the basic concepts of different types of controllers.
- To learn the analysis of a system in time domain and predict the transient performance parameters of a system for different standard inputs.
- To learn the analysis of a system in frequency domain by Polar Plots, Nyquist Plot and Bode Plot. To study the stability of the system with location of Poles and Zeros and study the stability by using Routh Hurwitz Criterion. To understand the concept of compensation and design the suitable compensator to make the system stable by Bode Plot
- To understand the concepts of Root Locus and to understand the concept of compensation and design the suitable compensator to make the system stable by Root Locus.

COURSE OUTCOMES (CO):

After completion of the course, a student will be able to

COURSE OUTCOME	DESCRIPTION					
(CO)						
CO1	Given a system, students shall be able to represent the system in mathematical form, identify type of the system, apply block reduction technique and Mason's Gain formula to obtain the transfer function of the given system, and formulate differential equation to represent the model of a mechanical system into equivalent electrical system and solve using Laplace transform.					
CO2	For a given system, student shall be able to understand the concept of different types of controllers used.					
CO3	For a given system, student shall be able to analyze and evaluate the system in time domain and predict the performance in time domain for different standard input signals. Evaluate the steady-state error. Examine and analyze the stability by Routh-Hurwitz Criterion.					
CO4	For a given system, student shall be able to analyze the system in frequency domain and explain the nature of stability. Examine and analyze the stability by Nyquist criterion and Bode Plot. For a given unstable system, students shall be able to identify and select the suitable compensator. To make the system stable select and design the suitable compensator for implementation. To develop the compensator by using Bode Plot.					
CO5	For a given system student shall be able to study and understand the concept Root Locus. For a given unstable system, students shall be able to identify and select the suitable compensator. To make the system stable select and design the suitable compensator for implementation. To develop the compensator by using Root Locus.					

CO-PO MAPPING:

	со	PO1 Engineering Knowledge	PO2 Problem Analysis	PO3 Design/development of solutions	PO4 Conduct investigations into complex problems	POS Modern tool usage	PO6 Engineer and Society	PO7 Environment and Sustainability	PO8 Ethics	PO9 Individual and Team work	PO10 Communication	PO11 Project Management and Finance	PO12 Lifelong learning
C01	Given a system, students shall be able to represent the system in mathematical form, identify type of the system, apply block reduction technique and Mason's Gain formula to obtain the transfer function of the given system, and formulate differential equation to represent the model of a mechanical system into equivalent electrical system and solve using Laplace transform.	3	3	2	1	1	1		1	1			1
C02	For a given system, student shall be able to analyze and evaluate the system in time domain and predict the performance in time domain for different standard input signals. Evaluate the steady-state error.	3	3	3	2	1	1			1			1
CO3	For a given system, student shall be able to analyze the system in frequency domain and explain the nature of stability. Examine and analyze the stability by Nyquist criterion and Bode Plot	3	3	3	2	1	1			1			
C04	For a given unstable system, students shall be able to identify and select the suitable compensator. To make the system stable select and design the suitable compensator for implementation. To develop the compensator by using Bode Plot and Root Locus.	3	3	3	2	1				2			
C05	For a given system student shall be able to study and understand the concept Root Locus. For a given unstable system, students shall be able to identify and select the suitable compensator. To make the system stable select and design the suitable compensator for implementation. To develop the compensator by using Root Locus.	3	3	2	2					1			

3: Strong contribution, 2: average contribution, 1: Low contribution

SYLLABUS WITH CO:

UNIT	CONTENT	СО
Ι	Introduction to Control Systems:	
	Introduction to control, open-loop control, feedback control. System modeling; Modeling	
	of electromechanical systems, Modeling of thermal and liquid systems, Laplace transform:	
	Properties of Laplace transform, Laplace transforms of electromechanical systems,	
	Transfer functions, Poles, zeros. Representation of multiple subsystems: Block diagrams,	
	Signal flow graphs.	
Π	Controllers:	2
	Basic control action- characteristics of on-off, proportional, single-speed floating, integral	
	and derivative control modes- P+I, P+D and P+I+D control modes-Pneumatic and	
	electronic controllers to realize various control actions. Tuning of PID controller- Ziergler	
	Nichols method damped oscillation method.	
III	Time Response:	3
	Response of first and second order system, system response versus pole zero location,	
	approximation of higher order system by low order system. Stability analysis: stability	
	analysis using Routh-Hurwitz test. Feedback systems: Steady state and tracking analysis.	
IV	Frequency Response Analysis, Bode plot technique, Stability Analysis: The Nyquist	4
	theorem, Stability Margins, Closed loop frequency response, Frequency domain	
	compensation techniques: Lead and Lag compensators.	
V	Root Locus:	5
	Sketching a root locus, Selection of gain from the root locus, Controller design using root	
	locus: Lead Compensation, Lag Compensation.	

RECOMMENDED BOOKS:

Text Books:

- 1. B.C Kuo, Automatic Control System, PHI
- 2. Katsuhiko Ogata, Modern Control Engineering, PHI
- 3. I.J.Nagrath & M.Gopal, Control System Engineering, New Age International Publishers
- 4. Norman S. Nise, Control System Engineering, John Wiley & Sons

Reference Books:

- 1. S.K. Bhattacharya, Control System Engineering, Pearson Education.
- 2. S. Hasan Saeed, Automatic Control System, Kataria and sons, New Delhi
- 3. Narendra Singh Beniwal & Ruby Beniwal, Automatic Control Systems with MATLAB Programming, Laxmi Publications, India.